| |
| |
| |
| |
| |
|
个人简历
1999年9月–2003年7月,体育在线365手机版化学工程学院制药工程专业学习,获(工学)学士学位;
2003年9月–2006年7月,体育在线365手机版化学工程学院制药工程专业学习,获(工学)硕士学位;
2006年9月–2009年6月,中国科学技术大学化学与材料科学学院应用化学专业学习,获(理学)博士学位;
2010年02月–2012年02月,安徽国祯环保科技股份有限公司-中国科学技术大学从事博士后研究,博士后
2015年4月–2016年3月,新加坡国立大学访学工作
2009年06月–至今,体育在线365手机版工作,历任讲师(2009.06)、副教授(2011.12)、教授(2017.01)。
主要研究领域、方向
开发高级氧化技术和电催化技术用于环境废弃物的低能耗处理和资源化转化
硕士生招生专业:化学工程与技术(学术型);材料与化工(专业型)
目前的研究方向:开发高级氧化和电催化技术用于环境废弃物的低能耗处理和资源化转化
主讲本科生课程:化工环保技术,制药过程环境保护,化工环境工程概论
主讲研究生课程:化工环境工程概论
研究成果(代表性成果)
(1)主要围绕微生物燃料电池(MFC)以及相关的常温空气阴极燃料电池技术,在其功能拓展和机理解析方面开展了系列研究工作。
(2)在国际环境工程领域最有影响力的刊物Environmental Science & Technology( ES&T )发表的论文是我国发表在ES&T上的第1篇和第2篇生物电催化研究论文。
(3)以第一作者或通讯作者共发表SCI论文40余篇,篇均影响因子5.0以上 ,引用次数总计500余次。在国际化学三大综述期刊之一的Chemical Society Reviews上发表综述论文,是迄今我国生物电催化综述所发表的影响因子最高的期刊。
(1)国家自然科学基金面上项目“基于碳载锰氧化物的湿式空气氧化反应的电诱导催化机制和催化强化”(No.22076037);
(2)国家重点研发计划固废资源化重点专项子任务城市多源有机污泥高质量资源化利用成套技(No.2020YFC1908702);
(3)国家自然科学基金面上项目“由酸性矿山废水中的Fe(II)原位制备非均相电Fenton催化剂及过程控制原理”(No.51478157);
(4)教育部新世纪优秀人才“废水资源化处理技术” (No.NCET 13–0767);
(5)国家自然科学青年基金项目“废水中硫酸盐向单质硫定向转化的耦合机制与系统调控”(No.51008108);
(6)国家自然科学基金国际合作项目子课题“处理废弃物和废水的高效厌氧反应器的监测”(No.2010GJCJ0678);
(7)安徽省自然科学基金面上项目“聚丙烯酰胺水性高聚物的生物电化学协同降解与强化效应”(No.JZ2015AKZR0025)
(8)企业委托合作项目“污泥高效脱水预处理研究”(No.10-612)
获奖及专利情况
获奖:
2016年,获安徽省教学成果三等奖,排名第2。
2014年,获安徽省“教坛新秀”称号。
2012年,获2012年度全国优秀博士论文提名奖。
2011年,获2011年度中国科学院优秀博士论文奖。
2011年,获安徽省第三届优秀博士论文奖。
2009年,获第三届日本“ORGANO”水质与水环境奖学金。
2008年,获“BP Young Scientists & Students Awards at the 13th International Biotechnology Symposium & Exhibition” (第13届国际生物技术大会青年科学家奖)。
专利:
(1)一种氮掺杂石墨烯负载钴氧还原反应电催化剂的水热合成方法. CN106450354A.
(2)一种含硫化物废水的资源化处理方法. CN105776448A.
(3)一种提高脱硫过程中络合铁再生速率与产电效率的燃料电池运行工艺. CN 104766981B.
(4)一种肠衣-肝素加工废水的资源化处理方法. CN103923164B.
(5)一种低电压下氧气辅助阳极催化氧化降解水体中有机污染物的方法. CN107337262A.
(6)一种氮掺杂碳负载镍电Fenton催化剂的制备方法. CN106423276A.
(7)一种非均相电Fenton阴极材料的制备方法. CN103928689B.
(8)一种通过单室燃料电池处理含硫废水回收单质硫并联产电能的方法. CN102881961B.
(9)一种催化湿式空气氧化降解有机污染的复合电极材料及其应用方法CN112250159A
(10)一种功能化污泥基碳三维颗粒电极的制备及其应用CN112374583A
(11)一种自支撑MnOx/LSC三维复合电极的制备及其在矿化难降解有机污染物中的应用
(12)一种MnO/C阳极电催化剂的制备方法及其应用CN108808024A
著作论文(代表作)
[1]Self-supporting MnOx nanoparticles on loofah-sponge-derived carbon felt for electroassisted catalytic wet air oxidation of water contaminants, ACS EST Engg., 2021, 1, 173-182, Sun, M.; Liu, H.H.; Tao, X.F.; Zhai, L.F*, Wang, S*.
[2]A generalized kinetic model for electro-assisted catalytic wet air oxidation of triclosan on Ni@NiO/graphite electrode, Chem. Eng. Sci. 2020, 222, 115696, Sun, M.; Hong, X.H.; Tao, X.F.; Zhai, L.F*.
[3]Catalytic behaviors of manganese oxides in electro-assisted catalytic air oxidation reaction: Influence of structural properties, Appl. Surf. Sci., 2020, 511, 145536, Sun, M.; Fang, L.M.; Hong, X.H.; Zhang, F.; Zhai, L.F*, Wang, S*.
[4]Degradation of bisphenol A by electrocatalytic wet air oxidation process: Kinetic modeling, degradation pathway and performance assessment, Chem. Eng. J., 2020, 387, 124124, Sun, M.; Liu, H.H.; Zhang, Y.; Zhai, L.F*.
[5] Bioelectrochemical element conversion reactions towards generation of energy and value-added chemicals, Prog. Energ. Combust., 2020, 77, 100814, Sun, M.; Zhai, LF.; Mu, Y.*; Yu, HQ.*
[6] Electro-assisted catalytic wet air oxidation of organic pollutants on a MnO@C/GF anode under room condition, Appl. Catal. B-Environ., 2019, 256: 117822, Zhai, L.F.; Duan, M.F.; Qiao, M.X.; Sun, M.*, Wang, S*.
[7]Room-temperature air oxidation of organic pollutants via electrocatalysis by nanoscaled Co-CoO on graphite felt anode, Environ. Int., 2019, 131: 104977, Sun, M.; Zhang,Y.; Liu, H.H.; Zhang, F.; Zhai, L.F.*, Wang, S*.
[8]Excellent performance of electro-assisted catalytic wet air oxidation of refractory organic pollutants, Water Res., 2019, 158: 313-321, Sun, M.; Zhang, Y.; Kong, S.Y.; Zhai, L.F.*, Wang S*.
[9]Electro-activation of O2 on MnO2/graphite felt for efficient oxidation of water contaminants under room condition, Chemosphere, 2019, 234: 269-276, Sun, M.*; Fang, L.M.; Liu, J.Q.; Zhang, F.; Zhai, L.F*.
[10]Facile synthesis of Co-N-rGO composites as an excellent electrocatalyst for oxygen reduction reaction, Chem. Eng. Sci., 2019, 194, 45-53, Zhai, L.F.*; Kong, S.Y.; Zhang, H.; Tian, W.; Sun, M.; Sun, H., Wang, S*.
[11]Air oxidation of pollutants on cathodic nickel@nickel oxide/graphite felt under room condition, J. Clean. Prod., 2019, 224: 256-263, Zhai, L.F.*; Kong, S.Y.; Duan, M.F.; Sun, M*.
[12]Selective cleavage of C-O bond in diaryl ether contaminants via anodic oxidation. ACS Sustain, Chem. Eng., 2019, 7: 18414-18420, Zhai, L.F.; Duan, M.F.; Guo, H.Y.; Zhang, F.*; Sun, M*.
[13]Surface modification of graphite support as an effective strategy to enhance the electro-Fenton activity of Fe3O4/graphite composites in situ fabricated from acid mine drainage using an air-cathode fuel cell, ACS Sustain. Chem. Eng., 2019, 7: 8367-8374, Zhai, L.F.*; Sun, Y.M.; Guo, H.Y.; Sun, M*.
[14]Corrosion of graphite electrode in electrochemical advanced oxidation processes: Degradation protocol and environmental implication, Chem. Eng. J., 2018, 344, 410-418, Qiao, M.X.; Zhang, Y.; Zhai, L.F.*; Sun, M*.
[15]In situ fabrication of electro-Fenton catalyst from Fe2+ in acid mine drainage: influence of coexisting metal cations, ACS Sustain. Chem. Eng., 2018, 6 (11): 14154-14161, Sun, Y.M.; Zhai, L.F. *; Duan, M.F.; Sun, M*.
[16]Fabrication of Ni-Fe LDH/GF anode for enhanced Fe(III) regeneration in fuel cell-assisted chelated-iron dehydrosulfurization process, J. Chem. Technol. Biot., 2018, 93:80-87, Zhai, L.F.*; Mao, H.Z.; Sun, M*.
[17]Electrochemical oxide sulfide in an air-cathode fuel cell with manganese oxide/graphite felt composite as anode, Sep. Purif. Technol., 2018,197:47-53, Zhai, L.F.*; Wang, R.; Duan, M.F.; Sun, M*.
[18]Anodic oxidation-assisted O2 oxidation of phenol catalyzed by Fe3O4 at low voltage, Electrochim. Acta., 2018, 261:394-401, Lei, L.; Fang, L.M.; Zhai, L.F.*; Wang, R.; Sun, M*.
[19]Free-Radical Induced Chain Degradation of High-Molecular-Weight Polyacrylamide in a Heterogeneous Electro-Fenton System, ACS Sustain. Chem. Eng., 2017, 5 (9): 7832-7839, Sun M.*; Qiao, M.X.; Wang, J.; Zhai, L.F*.
[20]Solution pH Manipulates Sulfur and Electricity Recovery From Aqueous Sulfide in an Air-Cathode Fuel Cell, Clean-Soil Air Water, 2016, 44(9999): 1-6, Zhai, L.F.*; Wang, B.; Sun, M.
[21]Harvest and utilization of chemical energy in wastes by microbial fuel cells, Chem. Soc. Rev., 2016, 45, 2847-2870, Sun, M.; Zhai, L.F.; Li, W,W.; Yu, H. Q*.
[22]Understanding the Catalyst Regeneration Kinetics in the Chelated Iron Dehydrosulfurization Process: A Model in Terms of Fe(II) Speciation, Ind. Eng. Chem. Res., 2015, 54 (25): 6430-6437, Zhai, L.F.*; Hu, L.L.; Sun, M.
[23]Electricity-induced catalytic oxidation of RhB by O2 at a graphite anode, Electrochim. Acta. 2015, 158:314-320, Sun, M.*; Liu, Y.; Xiang, W.; Zhai, L.F.
[24]In-situ fabrication of supported iron oxides from synthetic acid mine drainage: High catalytic activities and good stabilities towards electro-Fenton reaction, Appl. Catal. B: Environ., 2015, 165:103-110, Sun, M.*; Ru, X.R.; Zhai, L.F.
[25]Bioelectricity-assisted partial degradation of linear polyacrylamide in a bioelectrochemical system, Appl. Microbiol. Biot., 2015, 99: 947-956, Cui, Y.Z.; Zhang, J.; Sun, M.*; Zhai, L.F.
[26]Manipulate an air-cathode fuel cell toward recovering highly active heterogeneous electro-Fenton catalyst from the Fe(II) in acid mine drainage, Miner. Eng., 2015, 84: 1-7, Sun, M.*; Wu, N.N.; Zhai, L.F.; Ru X.R.
[27]Iron-contamination-induced performance degradation of an iron-fed fuel cell, J. Power Sources, 2014, 248: 6-14, Sun, M.*; Song, W.; Zhai, L.F.; Tong, Z.H.
[28]Enhanced electricity generation from electrochemical oxidation of Fe(II) in an air-cathode fuel cell amended with chelating anions, Ind. Eng. Chem. Res., 2013, 52, 2234-2240, Zhai, L.F.; Tong, Z.H.; Sun, M.*; Song, W.; Jin S.; Harada, H.
[29]Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process, J. Hazard. Mater., 2013, 263: 643-649, Sun, M.*; Song, W.; Zhai, L. F.; Cui, Y. Z.
[30]Elucidating electro-oxidation kinetics of Fe(II) in the anode of air-cathode fuel cells from an Fe(II) speciation perspective, Chem. Eng. J., 2013, 228, 781-789, Sun, M.*; Song, W.; Zhai, L.F.; Ru, X.R.; Cui, Y.Z.
[31]Carbonate-mediated Fe(II) oxidation in the air-cathode fuel cell: A kinetic model in terms of Fe(II) speciation, J. Phys. Chem. A., 2013, 117, 4627-4635, Song, W.; Zhai, L.F.; Cui, Y.Z.; Sun, M.*; Jiang, Y.
[32]An integrated approach to optimize the conditioning chemicals for enhanced sludge conditioning in a pilot-scale sludge dewatering process, Bioresource Technol., 2012, 121, 161-168, Zhai, L.F.; Sun, M.*; Song, W.; Wang, G.
[33]A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater, J. Hazard. Mater., 2012, 243, 350-356, Zhai, L.F.; Song, W.; Tong, Z.H.; Sun, M*.
[34] pH dependence of structure and surface properties of microbial EPS, Environmental Science & Technology, 2012, 46, 737-744, Wang, L.L.; Wang, L.F.; Ren, X.M.; Ye, X.D.; Li, W.W.; Yuan, S.J.; Sun, M.; Sheng, G.P.; Yu, H.Q.; Wang, X.K.
[35] Selection of effective methods for extracting extracellular polymeric substances (EPSs) from Bacillus megaterium TF10, Spearation and Purification Technology, 2012, 95, 216-221,Sun, M.; Li, W.W.; Mu, Z.X.; Wang, H.L.; Yu, H.Q.; Li, Y.Y.; Harada, H.
[36] A novel integrated approach to quantitatively evaluate the efficiency of extracellular polymeric substances(EPS) extraction process, Applied Microbiology and Biotechnology, 2012, 96, 1577-1585, Sun, M.; Li, W.W.; Yu, H.Q.; Harada, H.
[37] An innovative miniature microbial fuel cell fabricated using photolithography. Biosensors & Bioelectronics, 2011, 26, 2841-2846, Chen, Y.P.; Zhao, Y.; Qiu, K.Q.; Chun, J.; Lu, R.; Sun, M.; Liu, X.W.; Sheng, G.P.; Yu, H.Q.; Chen, J.; Li, W.J.; Liu, G.; Tian, Y.C.; Xiong, Y.
[38] Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosensors & Bioelectronics, 2011, 26, 3987-3992, Li, W.W.; Sheng, G.P.; Liu, X.W.; Cai, P.J.; Sun, M.; Xiao, X.; Wang, Y.K.; Tong, Z.H.; Dong, F.; Yu, H.Q.
[39] Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators, Applied Microbiology & Biotechnology, 2011, 89, 201-208, Liu, R.H.; Sheng, G.P.; Sun, M.; Zang, G.L.; Li, W.W.; Tong, Z.H.; Dong, F.; Lam, M.H.W.; Yu, H.Q.
[40] Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation-emission matrix fluorescence spectroscopy measurement and kinetic modeling, Water Res., 2009, 43, 1350-1358, Ni, B.J.; Fang, F.; Xie, W.M.; Sun, M.; Sheng, G.P.; Li, W.H.; Yu, H.Q.
[41] Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzymes from Serratia marcescens AB90027, Water Res., 2006, 40, 3091-3098,Yao, R.S.; Sun, M.; Wang, C.L.; Deng, S.S.